Backup your DVDs with Any DVD Shrink

Download Any DVD Shrink Order Any DVD Shrink

What are the copy protection issues?


CPSA (content protection system architecture) is the name given to the overall framework for security and access control across the entire DVD family. Developed by the "4C" entity (Intel, IBM, Matsushita, and Toshiba) in cooperation with the Copy Protection Technical Working Group (CPTWG), it covers encryption, watermarking, protection of analog and digital outputs, and so on. There are many forms of content protection that apply to DVD.

1) Analog CPS (Macrovision)

Videotape (analog) copying is prevented with a Macrovision 7.0 or similar circuit in every player. Macrovision may show up as stripes of color, distortion, rolling, black & white picture, and dark/light cycling. Macrovision creates problems for most TV/VCR combos and some high-end equipment such as line doublers and video projectors.

The general term for a system that prevents taping is APS (Analog Protection System), also sometimes called copyguard. Computer video cards with composite or s-video (Y/C) output must also use APS. Macrovision changes the composite video and s-video output in two ways: the Colorstripe technique creates a rapidly modulated colorburst signal, and the AGC technique inserts pulses in the vertical blanking signal. This confuses the synchronization and automatic-recording-level circuitry in 95% of consumer VCRs. Unfortunately, it can degrade the picture, especially with old or nonstandard equipment. Macrovision was not present on analog component video output of early players, but is now required on component output (AGC only, since there is no burst in a component signal).

The discs themselves contain "trigger bits" telling the player whether or not to enable Macrovision AGC, with the optional addition of 2-line or 4-line Colorstripe. The triggers occur about twice a second, which allows fine control over what part of the video is protected. The producer of the disc decides what amount of copy protection to enable and then pays Macrovision royalties accordingly (several cents per disc). Just as with videotapes, some DVDs are Macrovision-protected and some aren't.

Each disc contains information specifying if the contents can be copied. This is a serial copy generation management system (SCMS) designed to prevent initial copies or generational copies (copies of copies). The CGMS information is embedded in the outgoing video signal. For CGMS to work, the equipment making the copy must recognize and respect the CGMS information. The analog standard (CGMS-A) encodes the data on NTSC line 21 (in the XDS service) or line 20. CGMS-A is recognized by most digital camcorders and by some computer video capture cards (they will flash a message such as "recording inhibited"). Professional time-base correctors (TBCs) that regenerate lines 20 and 21 will remove CGMS-A information from an analog signal. The digital standard (CGMS-D) is included in DTCP and HDMI for digital connections such as IEEE 1394/FireWire.

3) Content Scramble System (CSS)

Because of the potential for perfect digital copies, paranoid movie studios forced a deeper copy protection requirement into the DVD standard. Content Scramble System (CSS) is a data encryption and authentication scheme intended to prevent copying video files directly from DVD-Video discs. CSS was developed primarily by Matsushita and Toshiba. Each CSS player licensee is given a key from a master set of 409 keys stored on every CSS-encrypted disc. The theory was to allow a license to be revoked by removing its key from future discs. The CSS decryption algorithm exchanges keys with the drive unit to generate an encryption key that is then used to obfuscate the exchange of disc keys and title keys that are needed to decrypt data from the disc. DVD players have CSS circuitry that decrypts the data before it's decoded and displayed, and computer DVD decoder hardware and software must include a CSS decryption module. All DVD-ROM drives have extra firmware to exchange authentication and decryption keys with the CSS module in the computer. As of 2000 DVD-ROM drives are required to support regional management in conjunction with CSS. Makers of equipment used to display DVD-Video (drives, decoder chips, decoder software, display adapters, etc.) must license CSS. There is an annual $15,000 fee for the CSS license, and qualification is a lengthy process, so it's recommended that interested parties apply early. CSS is administered by the DVD Copy Control Association (DVD CCA). Near the end of May 1997, CSS licenses were finally granted for software decoding. The license is extremely restrictive in an attempt to keep the CSS algorithm and keys secret. Of course, nothing that's used on millions of players and drives worldwide could be kept secret for long. In October 1999, the CSS algorithm was cracked and posted on the Internet, triggering endless controversies and legal battles.

4) Content Protection for Prerecorded Media (CPPM)

CPPM is used only for DVD-Audio. It was developed as an improvement on CSS. Keys are stored in the lead-in area, but unlike CSS no title keys are placed in the sector headers. Each volume has a 56-bit album identifier, similar to a CSS disc key, stored in the control area. Each disc contains a media key block, stored in a file in the clear on the disc. The media key block data is logically ordered in rows and columns that are used during the authentication process to generate a decryption key from a specific set of player keys (device keys). As with CSS, the media key block can be updated to revoke the use of compromised player keys. If the device key is revoked, the media key block processing step will result in an invalid key value. The authentication mechanism is the same as for CSS, so no changes are required to existing drives. A disc may contain both CSS and CPPM content if it is a hybrid DVD-Video/DVD-Audio disc.

5) Content Protection for Recordable Media (CPRM)

CPRM is a mechanism that ties a recording to the media on which it is recorded. It is supported by some DVD recorders, but not by many DVD players. Each blank recordable DVD has a unique 64-bit media ID etched in the BCA. When protected content is recorded onto the disc, it can be encrypted with a 56-bit C2 (Cryptomeria) cipher derived from the media ID. During playback, the ID is read from the BCA and used to generate a key to decrypt the contents of the disc. If the contents of the disc are copied to other media, the ID will be absent or wrong and the data will not be decryptable.

6) Digital Copy Protection System (DCPS)

In order to provide digital connections between components without allowing perfect digital copies, five digital copy protection systems were proposed to the CEA. The frontrunner is DTCP (digital transmission content protection), which focuses on IEEE 1394/FireWire but can be applied to other protocols. The draft proposal (called 5C, for the five companies that developed it) was made by Intel, Sony, Hitachi, Matsushita, and Toshiba in February 1998. Sony released a DTCP chip in mid 1999. Under DTCP, devices that are digitally connected, such as a DVD player and a digital TV or a digital VCR, exchange keys and authentication certificates to establish a secure channel. The DVD player encrypts the encoded audio/video signal as it sends it to the receiving device, which must decrypt it. This keeps other connected but unauthenticated devices from stealing the signal. No encryption is needed for content that is not copy protected. Security can be "renewed" by new content (such as new discs or new broadcasts) and new devices that carry updated keys and revocation lists (to identify unauthorized or compromised devices). A competing proposal, XCA (extended conditional access), from Zenith and Thomson, is similar to DTCP but can work with one-way digital interfaces (such as the EIA-762 RF remodulator standard) and uses smart cards for renewable security. Other proposals have been made by MRJ Technology, NDS, and Philips. In all five proposals, content is marked with CGMS-style flags of "copy freely", "copy once," "don't copy," and sometimes "no more copies". Digital devices that do nothing more than reproduce audio and video will be able to receive all data (as long as they can authenticate that they are playback-only devices). Digital recording devices are only able to receive data that is marked as copyable, and they must change the flag to "don't copy" or "no more copies" if the source is marked "copy once." DCPSes are designed for the next generation of digital TVs, digital receivers, and digital video recorders. They require new DVD players with digital connectors (such as those on DV equipment). These new products began to appear in 2003. Since the encryption is done by the player, no changes are needed to existing discs.

7) High-Bandwidth Digital Content Protection (HDCP, DVI, and HDMI)

HDCP is similar to DTCP, but it was designed for digital video monitor interfaces. In 1998, the Digital Display Working Group (DDWG) was formed to create a universal interface standard between computers and displays to replace the analog VGA connection standard. The resulting Digital Visual Interface (DVI) specification, released in April 1999, was based on Silicon Image's PanelLink technology, which at 4.95 Gbps can support 1600?200 (UXGA) resolution, which covers all the HDTV resolutions. Intel proposed HDCP as a security component for DVI. A new connection standard called HDMI combines DVI and HDCP. DVD players with DVI or HDMI digital video output appeared in spring 2003. Many new HDTV displays are likely to have both IEEE 1394 and HDMI connections.

HDCP provides authentication, encryption, and revocation. Specialized circuitry in the playback device and in the display monitor encrypts video data before it is sent over the link. When an HDMI output senses that the connected monitor does not support HDCP, it lowers the image quality of protected content. The HDCP key exchange process verifies that a receiving device is authorized to display or record video. It uses an array of forty 56-bit secret device keys and a 40-bit key selection vector -- all supplied by the HDCP licensing entity. If the security of a display device is compromised, its key selection vector is placed on the revocation list. The host device has the responsibility of maintaining the revocation list, which is updated by system renewability messages (SRMs) carried by newer devices and by video content. Once the authority of the receiving device has been established, the video is encrypted by an exclusive-or operation with a stream cipher generated from keys exchanged during the authentication process. If a display device with no decryption ability attempts to display encrypted content, it appears as random noise.

The first four forms of copy protection (Macrovision, CGMS, CSS, and CPPM) are optional for the producer of a disc. CSS decryption is optional for hardware and software playback manufacturers, although a player or computer without decryption capability will only be able to play unencrypted movies. CPRM is handled automatically by DVD recorders, although it's optional and many recorders don't support it. DTCP and HDCP are handled by DVD players with digital video outputs.

These copy protection schemes are designed only to guard against casual copying (which the studios claim causes billions of dollars in lost revenue). The goal is to "keep the honest people honest." The people who developed the copy protection standards are the first to admit they can't stop well-equipped pirates.

Movie studios have promoted legislation making it illegal to defeat DVD copy protection. The result is the World Intellectual Property Organization (WIPO) Copyright Treaty and the WIPO Performances and Phonograms Treaty (December 1996) and the compliant U.S. Digital Millennium Copyright Act (DMCA), passed into law in October 1998. Software intended specifically to circumvent copy protection is now illegal in the U.S. and many other countries. A co-chair of the legal group of the DVD copy protection committee stated, "in the video context, the contemplated legislation should also provide some specific assurances that certain reasonable and customary home recording practices will be permitted, in addition to providing penalties for circumvention." It's not at all clear how this might be "permitted" by a player or by studios that routinely set the "don't copy" flag on all their discs.

DVD-ROM drives and computers, including DVD-ROM upgrade kits, are required to support Macrovision, CGMS, and CSS. PC video cards with TV outputs that don't support Macrovision will not work with encrypted movies. Computers with IEEE 1394/FireWire connections must support the final DCPS standard in order to work with other DCPS devices. Likewise computers with HDMI (DVI) connections must support HDCP to output DVD-Video content. Every DVD-ROM drive must include CSS circuitry to establish a secure connection to the decoder hardware or software in the computer, although CSS can only be used on DVD-Video content. Of course, since a DVD-ROM can hold any form of computer data, other encryption schemes can be implemented.



Introduction to Any DVD Shrink

Any DVD Shrink is a powerful DVD copy and burning software, which can decode and clone copy-protected movie DVD and non-protected DVDs for you for storage and collections, or burn ISO image and DVD folder on hard drive to DVD and burn DVDs among different DVD discs. It enables you to copy you movie DVDs to hard drive in dvd folder or ISO image file formats, or clone DVD movies from one dvd disc from anther one, even compress DVDs automatically when necessary. It is so easy to use, backup your costly DVDs within a few clicks.